Датчик пульса (плетизмограф) своими руками

Датчик пульса (плетизмограф) своими руками

По многочисленным просьбам читателей нашего блога, в дополнение к материалам по самостоятельной сборке электрокардиографа, публикуем все необходимое для сборки пульсометра. Измерять ЧСС будем оптическим методом "на отражение". В качестве датчика используется светодиод и фотоприемник, монтируемые в корпус прибора. Вы же можете сделать свой датчик любой другой конструкции (например, датчик "на просвет" из бельевой прищепки). Вашему вниманию представляем первую публичную (на самом деле - восьмую опытную) версию устройства "Pulse Lite"

 

Уважаемые радиолюбители, обращаю ваше внимание, что фотоплетизмограф - устройство сложное, в котором при сборке можно наделать массу ошибок, и с "двух пинков" оно не заведется. Если вы собираетесь собирать устройство из того, что у вас есть под рукой, заменяя приведенные на принципиальной схеме детали и номиналы, учтите, что, скорее всего, устройство работать не будет.  Даже домашний кардиограф "ECG Lite" в этом плане намного менее привередлив. Не следует потом пенять на разработчиков за потраченное впустую время, текстолит и радиодетали. Если Вам нужен пульсометр из парочки усилителей, светодиода и фотоприемника, используйте другие схемы, благо в Интернете их масса.

Первые трудности

Пару слов о том, почему фотоплетизмограф намного сложнее, чем кардиограф, с точки зрения схемотехники.

Вспомним, что электрокардиограф регистрирует электрические потенциалы, наводимые электрической активностью сердечной мышцы на теле. Эти самые бипотенциалы не имеют сильных отличий у разных людей, и в норме амплитуда сигнала (от конечностей) составляет 1 ± 0,2 мВ.

Пульсограф регистрирует сигналы оптическим методом - фотоприемник регистрирует изменение интенсивности света (в качестве источника выступает светодиод), прошедшего через палец (или рассеянного им -  для датчика "на отражение"), вызванное насосной работой нашего сердца - периодическим увеличением кровенаполнения тканей.

Казалось бы, ничего сложного, если бы не два главных "НО". Кровенаполнение, эластичность сосудов, давление и, самое главное, - толщина кожного покрова у людей отличаются чрезвычайно сильно.  Это приводит к тому, что уровень постоянной засветки фотоприемника (на который влияет наша кожа и размер пальцев) и уровень переменной составляющей (давление, сосуды, состояние кровоснабжения в конечностях и проч.)  отличаются у разных людей в сотни раз.

Для создания пульсографа нужны цепи формирования сигнала (драйвер) источника света, сложные инфра-низкочастотные усилители (ЭКГ - более высокочастотный сигнал), цепи, подавляющие помехи от постоянной  засветки сторонних источников; а также хитрые цепи автоматической регулировки усиления.
Можете, для интереса, сравнить цены профессиональных кардиографов и пульсоксиметров (последние - намного дороже).
Надеюсь, мы вас достаточно напугали 🙂 , чтобы пропало желание собрать фотоплетизмограф самому. Не пропало? Тогда читайте дальше.

Характеристики прибора

Если вы все сделали правильно - без ошибок в плате и изменений схемы и без бракованных деталей, то на выходе вы получите устройство, которое порадует Вас следующими фичами:

  • регистрирует пульсовую волну датчиком, состоящим из светодиода и фотоприемника (можно делать датчик на просвет или на отражение);
  • передает сигнал в ПК по USB, а ПО для ПК умеет немало:
  • вычисляет мгновенную ЧСС;
  • выполняет контурный анализ пульсовой волны и анализ вариабельности сердечного ритма;
  • записывает фотоплетизмограмму любой длительности в файл;
  • выполняет автоматизированную диагностику (база диагнозов настраивается);
  • выводит на печать результаты исследований.

Ограничения данного компьютерного пульсографа:

  • не работает с прищепками Nellcor и ушными клипсами с Aliexpress!
  • не работает с последней версией программы Pulse Lite Control!
  • не измеряет оксигенацию!

Еще раз повторюсь: схема, плата и прошивка пульсометра - первой хорошо отлаженной версии фотоплетизмографа "Pulse Lite", поэтому с прищепкой Nellcor не работает, с последней версией ПО тоже не работает. "Открывать" последнюю версию пульсографа Pulse Lite не планируем.

Все для самостоятельного изготовления

Принципиальную схему и всё необходимое для изготовления платы в домашних условиях по ЛУТ (в формате pdf) качайте по данной ссылке. В архиве находятся, помимо схемы, готовые к распечатке (учтите, зеркалить уже ничего не нужно, печатать без масштабирования, т.е. 1:1!) верхняя и нижняя стороны платы, карта переходных отверстий (вид сверху и снизу), карта расположения элементов.

Прошивку качайте здесь.

Программу для ПК качайте здесь.

Хитрости при построении схемных решений

Автор этих строк предполагает, что вы уже скачали и увидели электрическую схему фотоплетизмографа. Если вы читаете дальше, значит, желание сделать прибор все еще не пропало, и это не может не радовать 🙂 . Только таким упорным читателям мы и откроем главные тайны создания нашего девайса. Итак, чтобы принципиальная схема фотоплетизмографа стала более понятной, проясним самые важные технические решения и причины, побудившие внедрить таковые в наш прибор.

Одна из проблем фотоплетизмографии уже была нами озвучена - это чувствительность прибора к засветкам сторонних источников, влияние которых очень сложно исключить столь очевидным применением фильтрующих цепей, потому что полезный сигнал лежит в том же диапазоне частот, что и НЧ помехи (от долей до десятков Герц). Для усиления полезного сигнала (фотоплетизмограммы) было принято решение использовать принцип модуляции - демодуляции, который заключается в следующем:

  1. Переносим полезный сигнал в область высоких частот. Для этого светодиод питается не постоянным током, а переменным, частотой 5 кГц. Таким образом формируется несущий сигнал высокой частоты. При прохождении через палец интенсивность света (пульсирующего с частотой 5 кГц) меняется  из-за периодических колебаний кровенаполнения. Следовательно, на фотодетектор попадает ВЧ сигнал, промодулированный по амплитуде полезным сигналом фотоплетизмограммы.
  2. Далее вполне безопасно и относительно просто выполняем фильтрацию низкочастотных помех, обусловленных сторонней засветкой, поскольку спектр полезного сигнала лежит в ВЧ диапазоне (5 кГц).
  3. Усиливаем ВЧ сигнал классическими усилителями на дешевых операционниках.
  4. Выполняем амплитудное детектирование для извлечения полезного низкочастотного сигнала (огибающей).
  5. Фильтруем и усиливаем сигнал низкой частоты.

Проблему №2 (разное кровенаполнение, толщина кожных покровов и прочее) решали реализацией автоматической регулировки коэффициента усиления высокочастотного и низкочастотного усилительных каскадов.

Собственно говоря, это все хитрости, которые, с одной стороны, усложнили схему до безобразия, с другой - сделали возможным создание фотоплетизмографа, который стабильно регистрирует пульсовую волну не только у пациента, который его разрабатывал, а у всех желающих, и который  построен на базе недорогих электронных комплектующих, доступных в каждом уважающем себя магазине радиодеталей.

Поясняем схемотехнику

Схема блока питания фотоплетизмографа

Теперь перейдем к подробностям. Питание фотоплетизмограф получает от ПК по кабелю USB. Гальваническая развязка прибора с ПК не реализована, поскольку при регистрации пульса электрического контакта с пациентом нет. Повышающий импульсный преобразовать питания на базе boost-контроллера NCP1406, выход которого подключен к удвоителю напряжения со средней точкой, подключенной к общему проводу GND, обеспечивает двуполярное питание ± 4В для усилительного тракта, генератора и драйвера светодиода. Питание контроллера обеспечивается отдельно от всей аналоговой части линейным стабилизатором на 3,3В NCP1117ST33T3G, поскольку для работы устройства с ПК по USB (прибор работает как HID-совместимое устройство) на линиях контроллера D+ и D- уровни не должны превышать 3,3В. Можно, конечно, поставить на линиях D+ и D- стабилитроны на 3,3В, сбрасывающие лишнее напряжение, но это приводит к лишнему потреблению, да и сама по себе развязка цепей питания аналоговой и цифровой части - это всегда плюс.Схема компьютерного фотоплетизмографа - генератор

Генератор на базе микросхемы ОУ TL072 (каскад DA1:A) формирует синусоидальный сигнал, драйвер питания светодиода (DA1:B) обеспечивает электрический ток через светодиод, сила которого пропорциональна выходному напряжению генератора. Вместе генератор и драйвер обеспечивают пульсирующее излучение светодиода X1 с частотой 5 кГц и минимальными высшими гармониками. Питание светодиода прямоугольными импульсами приводит к значительному искажению полезного сигнала высшими гармониками после детектирования, поэтому и питаем светодиод синусом.

Фотодиод включен в режиме фотогальванического элемента (без внешнего обратного напряжения), R29 - нагрузочный резистор, который позволяет увеличить быстродействие датчика при таком включении. Конденсаторы C29 и C36 позволяют убрать постоянную составляющую сигнала, которая вызвана сторонними засветками. После первого ВЧ каскада усиления установлен регулируемый микроконтроллером резистивный делитель (на цифровом потенциометре MCP41010, управляемом по интерфейсу SPI).  Схема усилителя ВЧ фотоплетизмографаПоскольку питание MCP41010 однополярное (+4В), ВЧ сигнал смещаем на половину питания (R35-R37).  После ослабления сигнала делителем (с заданным контроллером ATMega уровнем ослабления) постоянное смещение убираем конденсатором C31, а ВЧ сигнал подаем на вход ВЧ усилителя с частотно-избирательными цепями в обратной связи (с максимумом усиления на 5 кГц) и далее на амплитудный детектор VD7-R28-C28 для извлечения полезного сигнала ФПГ (демодуляции).

Уровень ослабления сигнала резистивным делителем в ВЧ тракте подбирается исходя из величины постоянной составляющей, измеряемой АЦП контроллера на выходе детектора ADC_AMP.

Схема усилителя НЧ фотоплетизмографа

После амплитудного детектирования полезный сигнал поступает на повторитель на ОУ, который служит для согласования сопротивлений, и усилитель низкой частоты на составном транзисторе VT1-VT2. Схема Дарлингтона позволяет получить минимальный уровень инфранизкочастотных шумов при высоком усилении НЧ сигнала. После усилительного НЧ каскада сигнал подается на цифровой потенциометр MCP41010 и последний каскад усиления DA2:A. Уровень ослабления сигнала потенциометром подбирается исходя из размаха сигнала, измеряемого на входе АЦП контроллера ADC_IN.

Цифровая часть фотоплетизмографа построена на базе микроконтроллера семейства AVR ATMega48. Контроллер осуществляет автоматическую регулировку усиления высокочастотных и низкочастотных каскадов, измеряет сигналы на каналах АЦП (постоянная составляющая ФПГ после демодуляции ADC_AMP и усиленный сигнал пульсограммы ADC_IN).

Схема цифровой части фотоплетизмографа

Итог - схема фотоплетизмографа далека от тривиальной. В ней нет лишних деталей и электрических соединений. Если вы собираетесь использоваться нашу прошивку пульсометра и нашу программу для ПК, ничего не меняйте в схеме. Если вам нужны только идеи, а реализовать собираетесь свой девайс со своей программной частью - набивайте себе шишки экспериментируйте на здоровье!

Программирование микроконтроллера

Программируется контроллер через разъем для внутрисхемного программирования X3 по интерфейсу SPI c помощью программатора STK-500, ucGoZillla, USBtiny или др. Для прошивки контроллера вам также потребуется среда Atmel AVR Studio, которую можно скачать на официальном сайте Microchip.

При программировании микроконтроллера настройки установите согласно скриншотам ниже (внимательно отнеситесь к данному пункту, дабы не превратить контроллер в "кирпич").

Что можно

  • Использовать схему (или ее части) в любых Ваших проектах (в том числе коммерческих).
  • Собирать компьютерный фотоплетизмограф для себя и своих близких, для научных экспериментов и других благих целей.
  • Написать в комментариях на сайте о проблемах или успехах в сборке прибора.
  • Сообщить в комментариях о неясностях, неточностях, о неполноте материалов по сборке фотоплетизмографа.
  • Сообщить в комментариях на сайте о возможных ошибках в материалах по сборке пульсографа.
  • Предлагать в комментариях более разумные технические решения для задач регистрации пульсовой волны.
  • Делиться информацией о сборке прибора на тематических блогах, форумах со ссылкой на первоисточник.
  • Оставлять ссылку на наш сайт в качестве благодарности авторам проекта.

Что нельзя

  • Просить исходные коды прошивки и программы для ПК 🙂 .
  • Требовать от нас написать дополнительные материалы любого содержания на тему компьютерного фотоплетизмографа (техническое задание, бизнес-план, диплом, паспорт на изделие и т.д.).
  • Просить разместить открытые материалы по сборке последней версии компьютерного фотоплетизмографа "Pulse Lite".
  • Менять схему пульсографа по своему усмотрению, а потом ругать разработчиков за неработающий результат.
  • Критиковать схемные решения без весомых аргументов и разумных предложений.

В Интернете вы без большого труда найдете более простые и дешевые схемы датчиков пульса. Наш прибор не для тех, кому просто захотелось "скоротать вечерок за паяльником и поиграть с ЧСС". Здесь мы опубликовали схему нашего восьмого по счету опытного образца фотоплетизмографа, поэтому можем с уверенностью сказать - данный прибор позволит вам зарегистрировать пульсовую волну с минимальным уровнем шума у абсолютного большинства людей. Вам не придется крутить ручки подстроечных резисторов, чтобы увидеть на экране пульс. По форме пульсовой волны вы сможете посчитать индексы жесткости и отражения, а не только мгновенную ЧСС (тем более, что программа всё сделает для вас). Данный прибор - не китайская игрушка, с "недопиленным" ПО и глюкавой прошивкой, и не поделка, сделанная навесным монтажом из "старого распая".  Это полноценный компьютерный фотоплетизмограф, который может стать надежным помощником в вопросах объективного контроля вашего здоровья.

Спасибо за внимание к нашим разработкам и всем успехов в сборке вашего домашнего пульсографа!

пульсометр схема фотоплетизмограф схема пульсоксиметр своими руками пульсометр своими руками схема фотоплетизмографа купить фотоплетизмограф купить ведапульс схема элдар датчик пульса самому датчик пульса схема

2 комментария к записи Датчик пульса (плетизмограф) своими руками

  • admin пишет

    Фотоприемник SFH229 без фильтра, светодиод - любой сверхъяркий красный диаметром 3 мм.

  • Дмитрий пишет

    Не могли бы Вы уточнить какие именно свето и фото диоды были использованы и их характеристики (напряжение, ток и длина волны)

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*